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Chern-Simons theory

For a general gauge field A the Chern-Simons action is

Scs = −1
2

∫
tr
[
A ∧ dA− 2

3
A ∧ A ∧ A

]

3 (2+1) dimensional space-time
Invariant under gauge transformations up to total derivatives
No metric in the definition of the action (topological)
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Schrödinger non-linear model

The action of the Schrödinger model

Sψ =

∫
dtd2xψ∗i∂tψ −

1
2
|∂iψ|2 −

1
2

g2|ψ|4

Invariant under space-time translations
Invariant under space rotations
Invariant under Gallilean boosts (includes phase factor for ψ)
Invariant under scale transformation (t → λ2t , x → λx , ψ → λ−1ψ)
Invariant under special conformal transformation
Invariant under global U(1) phase transformation
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Jackiw-Pi model

S = Scs +

∫
dtd2xψ∗iDtψ −

1
2
|Diψ|2 −

1
2

g2|ψ|4

Dt = ∂t − ieAt

Di = ∂i − ieAi

Because Scs is purely topological it has all the symmetries of the
Schrödinger model
The global U(1) symmetry is now a local U(1) gauge symmetry
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Quantum mechanics of the Jackiw-Pi model

Due to renormalization the coupling constants are now running.
At 1-loop e does not renormalize
β(g2

R) = 1
2π

(
g4

R − e4)
Thus at the special point g2

R = ±e2

m conformal invariance is
preserved
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Equations of motion

e.o.m. scalar potential B = eρ = e|ψ|2

e.o.m. vector potential Ei = eεijJj

Schrödinger equation i∂tψ = −1
2 D2ψ − eφψ − g2|ψ|2ψ

ρ = |ψ|2

J = 1
2i (ψ

∗Dψ − (Dψ)∗ψ)
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Hamiltonian

The Hamiltonian of the system is given by

H =

∫
d2x

1
2
|Dψ|2 +

g2

2
|ψ|4

We introduce D± = 1√
2

(D1 ± iD2) which satisfy

1
2

D2 = D−D+ −
e
2

B = D+D− +
e
2

B
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Hamiltonian

The Hamiltonian can thus be written

H =

∫
d2x |D±ψ|2 +

1
2

(g2 ± e2)|ψ|4

Thus there exist stationary zero-energy solutions when
D+ψ = 0 and g2 + e2 = 0
D−ψ = 0 and g2 − e2 = 0

exactly when the theory is conformal QM at 1-loop
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Vortex solutions

Solving D+ψ = 0 leads to the Liouville equation

∆ log
√
ρ+ e2ρ = 0

These have the general solution

ρf (z) =
4
e2

|f ′(z)|2

(1 + |f (z)|2)2

f is an meromorphic function (Horvathy and Yera [9805161]).
The poles of f are the centers of the vortices.
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Clasification of the solutions on the plane

On the plane all solutions ρ are given by

f (z) =
P(z)

Q(z)
, deg(P) < deg(Q)

and vice versa (Horvathy and Yera [9805161]).

G.C. Stavenga (Fermilab) Vortices in the Jackiw-Pi model on the lattice 10 / 25



Plane examples 1
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Plane examples 2
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Total magnetic flux

Φ =

∫
d2xρ =

∫
d2x

|f ′|2

(1 + |f |2)2 = deg(Q)4π

Magnetic flux is quantized in units q = Φ
2π = 2deg(Q)
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Solutions on the torus

Impose periodic BC ρ(z + ωi) = ρ(z)

This not equal to imposing periodic BC on ψ and A
Naively: Φ =

∫
T B =

∫
∂T A = 0

However we will see q = Φ
2π = n
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Classification of solutions on the torus

Periodic boundaries for ρ means that

ρf = ρg

g(z) = f (z + ω)

Thus we need to classify which functions f ,g lead to the same ρ
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Classification of solutions on the torus

Insight: |dz|
1+|z|2 is the metric of the riemann sphere.

Thus ρ is invariant under rotations SO(3) = PSU(2) of the Riemann
sphere.

g(z) =
af (z) + b
cf (z) + d

(
a b
c d

)
∈ PSU(2)

Theorem: if and only if
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Classification of solutions on the torus

f (z + ωi) = U(ωi)f (z), U(ωi) ∈ PSU(2)

U(ωi)f (z) =
af (z) + b
cf (z) + d

Therefor one has a homomorphism

φf : Λ→ PSU(2)
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Classification of solutions on the torus

Two options:
[φf (ω1), φf (ω2)] = 0
φf lift to a representation φf : Λ→ SU(2)

{φf (ω1), φf (ω2)} = 0
φf lift to a representation φf : Λ∗ → SU(2)
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Commuting case

One can diagonalize the generators:

φf (ωi) =
(

eiθi/2 0
0 e−iθi/2

)
Therefor one obtains

f (z + ωi) = eiφi f (z)

Elliptic functions of the second-kind.
A complete mathematical classifications exist
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Anti-commuting case

Generators are

φf (ω1) =
(−i 0

0 i

)
φf (ω2) =

(
0 i
i 0

)
Therefor one obtains

f (z + ω1) = −f (z)

f (z + ω2) = 1/f (z)
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Anti-commuting case

Suppose f0 is a solution, then define

g(z) = f (z)/f0(z)

h(z) =
−g(z) + 1
g(z) + 1

Then

h(z + ω1) = h(z)

h(z + ω2) = −h(z)

h elliptic of the second kind with specific phase.
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Anti-commuting case

For f0 we use the Ansatz based on [Olesen Phys. Lett. B265 361-365]

f0(z) =
P2ω1,2ω2 + b

cP2ω1,2ω2 + d

where P2ω1,2ω2 is the Weierstrass p-function defined on a lattice with
double periods.
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Olesen solution
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Olesen’s solution (on rectangular grid)
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Magnetic charge

Commuting case: q=2n
Anti-commuting case: q=2n+1

Like with spin one gets half-integer charge from the projective
representation.
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Summary and outlook

A complete classification of all vortex solution on the torus has
been given.
May have some application in condensed matter systems.
I’d like to understand the relation between the vortices and the
vanishing of the conformal anomaly.
Higher genus surfaces?
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